Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Auroral substorms that move from auroral (<70°) to polar (>70°) magnetic latitudes (MLAT) are known to occur preferentially when a high‐speed solar wind stream passes by Earth. We report here on observations that occurred during a ∼75‐min interval with high‐speed solar wind on 28 November 2022 during which auroral arcs and very large geomagnetic disturbances (GMDs), also known as magnetic perturbation events (MPEs), with amplitude >9 nT/s = 540 nT/min moved progressively poleward at eight stations spanning a large region near and north of Hudson Bay, Canada shortly before midnight local time. Sustained GMD activity with amplitudes >3 nT/s appeared at each station for durations from 13 to 25 min. Spherical Elementary Currents Systems maps showed the poleward movement of a large‐scale westward electrojet as well as mesoscale electrojet structures and highly localized up/down pairs of vertical currents near these stations when the largest GMDs were observed. This study is consistent with other recent studies showing that very large poleward‐progressing GMDs can occur under high Vsw conditions, but is the first to document the sustained occurrence of large GMDs over such a wide high‐latitude region.more » « less
-
Abstract The occurrence of small‐scale and intense ionospheric currents that can contribute to geomagnetically induced currents have recently been discovered. A difficulty in their characterization is that their signatures are often only observed at single widely spaced (typically 200–400 km) ground geomagnetic stations. These small‐scale structures motivate the examination of the maximum station separation required to fully characterize these small‐scale signatures. We analyze distributions of correlation coefficients between closely spaced mid‐latitude and auroral zone ground magnetometer stations spanning day to month long intervals to assess the separation distance at which geomagnetic signatures appear in only one station. Distributions were analyzed using periods that included low and high geomagnetic activity. We used data from pairs of magnetometer stations across North America within 200 km of each other, all of which were separated primarily latitudinally. Results show that while measurements remain largely similar up to separations of 200 km, large and frequent differences appear starting at around 130 km separation. Larger differences and lower correlations are observed during high geomagnetic activity, while low geomagnetic activity leads to frequent high correlation even past 200 km separation. Small but identifiable differences can appear in magnetometer data from stations as close as 35 km during high geomagnetic activity. We recommend future magnetometer array deployment in the auroral and sub‐auroral zone to have separations of 100–150 km. This enables the monitoring of large scale effects of geomagnetic storms, better temporal and spatial resolution of substorms, and observations of small‐scale current signatures.more » « less
-
Abstract Ultraviolet images of Earth's polar regions obtained by high altitude spacecraft have proved to be immensely useful for documenting numerous features of the aurora and understanding the coupling between Earth's magnetosphere and ionosphere. In this study we have examined images obtained by the far ultraviolet Spectrographic Imager camera on the IMAGE satellite during the first three years of its mission (2000–2002) for comparison with observations of large geomagnetic disturbances (GMDs) by ground‐based magnetometers in eastern Arctic Canada. To our knowledge, this is the first study to investigate the use of high‐altitude imager data to identify the global context of GMDs. We found that rapid auroral motions or localized intensifications visible in these images coincide with regions of largedB/dtas well as localized and closely spaced up/down vertical currents and increased equivalent ionospheric currents, but one of the two events presented did not appear to be related to substorm processes. These magnetic perturbations and currents can appear or disappear in a few tens of seconds, thus highlighting the importance of images with a high cadence.more » « less
An official website of the United States government
